Calling System API and Service Program Procedures

Profound.js provides a number of simple ways to call any IBM i system API or any custom ILE service program procedure. This page describes the different

ways this can be done.

By defining a callable function

The easiest way to define the procedure as a callable function in JavaScript is with the use of the pjs.defineProc() API. It is simply a matter of specifying all
parameters and a return value if the procedure returns one. For example:

/| Define external procedure
pj s.defineProc("sqrt", {
srvpgm " QSYS/ QC2UTI L1",
parnms: [
{ type: 'float', length: 8}

1.
result: { type: 'float', length: 8}

1)

/1 Use external procedure as a sinple function
console.log(sqrt(16)); // output is 4 (the square root of 16)

If the service program is converted to Node.js in the future, no dependencies will be broken, and you can continue to call the functions in the same exact

way.

By calling procedures directly or creating wrapper functions
With the pjs.callProc() API, you can call IBM i procedures directly. It also makes it easy to create a JavaScript function wrapper for any ILE subprocedure.

Once the wrapper is created, the system API or subprocedure can again be called like a simple JavaScript function.

Creating the wrapper is really easy thanks to strong data type support in Profound.js. It is simply a matter of defining the parameters and return values as
fields with the appropriate IBM i data type.

A sample wrapper function looks like this:

function nmyproc(parml, parnR) {
pj s.define("parm", { type: 'char', length: 10, parm parnl });
pj s. defi ne("parnk", { type: 'char', length: 20, refParm parn? });

pj s.call Proc({
srvpgm " MYLI Bl MYSRVPGM',
procedure: "MYPROC',
argunents: [
{ field: "parm" },
{ field: "parnm2", byRef: true }

]
DK

You can then call the function using something like this:

nyproc("constant", pjs.refParn("field"));

In this example, the first parameter is passed by value and the second parameter is passed by reference.

If the procedure itself is converted to Node.js in the future, no dependencies will be broken, and you can continue to call the function in the same exact way.

By using pjs.callProcedure() for advanced scenarios


http://www.profoundlogic.com/docs/pages/viewpage.action?pageId=33096023
http://www.profoundlogic.com/docs/pages/viewpage.action?pageId=31752510
http://www.profoundlogic.com/docs/display/PUI/Strongly+typed+fields

For other more advanced use cases, Profound.js also provides the pjs.callProcedure() API. With pjs.callProcedure(), you can work with parameters and
return values at the buffer level and provide details such as operational parameter descriptors.


http://www.profoundlogic.com/docs/pages/viewpage.action?pageId=31031355

	Calling System API and Service Program Procedures

